A. Konfigurasi Relatif dan Konfigurasi Mutlak
Secara umum, kiralitas suatu objek paling nyata bila objek itu berinteraksi dengan objek kiral lainnya. Senyawa kiral itu sendiri berarti ketika karbon tertravalen mengikat empat gugus atau ligan yang berbeda. Kiral merupakan sifat ketanganan, dimana suatu objek disebut kiral jika tidak dapat ditumpangtindihkan dengan bayangan cerminnya.
Entatiomer memiliki sifat kiral yang identik, seperti titik lelelh, titik didih, rapatan, dan berbagai jenis spektrum. Kelarutannya dalam pelarut biasa yang akiral juga identik. Namun, entationer memiliki sifat kiral yang berbeda, salah satunya ialah arah pemutaran cahaya terpolarisasi-bidang (searah atau berlawanan arah jarum jam).
Meskipun entationer memutar cahaya terpolarisasi-bidang ke arah yang berlawanan, keduanya memiliki rotasi spesifik yang sama besarnya (tetapi dengan arah yang berlawanan), sebab besarnya derajat bukanlah sifat kiral. Hanya arah rotasi yang merupakan sifat kiral.
1. Ketentuan Fischer (Konfigurasi Relatif)
Dengan mengunakan Proyeksi Fischer, sistem penggambaran konfigurasi gugus disekitar pusat kiral yang berbeda (susunan ruang atom atau gugus yang menempel pada karbon kiral), yaitu konvensi D dan L. Metode ini banyak digunakan dalam biokimia dan kimia organik terutama untuk karbohidrat dan asam amino. Gliseraldehida ditetapkan sebagai senyawa standar untuk menentukan konfigurasi semua karbohidrat. Proyeksi Fischer terhadap gliseraldehida dengan rantai karbon digambarkan secara vertikal, dengan karbon yang paling teroksidasi (aldehid) berada pada bagian paling atas, dengan gambar struktur sebagai berikut :
Gugus OH pada pusat kiral digambarkan pada sisi sebelah kanan untuk isomer D dan sisi sebelah kiri untuk isomer L. Ini berarti setiap gula yang memiliki stereokimia yang sama dengan D-gliseraldehida termasuk gula seri D (misalnya D-glukosa), sedangkan gula yang memiliki stereokimia yang sama dengan L-gliseraldehida termasuk gula seri L. Di mana penentuan D atau L berdasarkan pada asimetris pada atom karbon molekul yang kedua dari belakang, yang merupakan C5 pada gambar sebagai berikut :
Situasi ini analog untuk asam amino, jika proyeksi Fischer digambarkan (rantai karbon vertikal dengan atom karbon yang paling teroksidasi berada paling atas), maka semua asam amino “alami” yang ditemukan dalam protein manusia, diketahui memiliki gugus NH3+ pada posisi sebelah kiri proyeksi Fischer, yang sama dengan L-gliseraldehida, sehingga asam-asam amino ini dikenal sebagai asam amino seri L. Hal ini sangat menguntungkan dan bermanfaat dibidang kesehatan, khususnya bidang Farmasi dalam hal rancangan obat dengan uji toksisitas selektif, di mana diketahui asam amino pada mikroorganisme memiliki konfigurasi yang berlawanan yaitu seri D, sebagai contoh Penisillin yang menghambat enzim transpeptidase dalam sintesis dinding sel mikroba, hal ini berhubungan dengan dipeptida D-alanin-D-alanin dari dinding sel mikroba yang mirip dengan struktur penisillin. Sehingga penisilin tidak toksik terhadap manusia yang memiliki L-alanin dalam protein tubuh.
Konfigurasi Relatif merupakan konfigurasi yang membandingkan atom-atom dalam ruang tiga dimensi dalam suatu senyawa dengan yang lain. Dalam menggamabarkan sturktur proyeksi fischer harus memperhatikan beberpa aturan, antara lain : gugus-gugus yang diletakkan horizontal adalah gugus-gugus yang mendekati pengamat. Gugus-gugus yang diletakkan vertikal adalah gugus-gugus yang menjauhi pengamat. Hetero atom (atom selain C dan H) diletakkan diatas. Contoh molekul Fischer untuk molekul metana (CH4). Cara penggambaran metana dari bentuk 3 dimensi menjadi 2 dimensi ini didasarkan pada 4 point peraturan dalam menggambar proyeksi fischer.
Pada gambar 3 dimensi atom H (hydrogen) nomor 1 dan 3 letaknya mendekati pengamat maka digambarkan dalam posisi horizontal. Dan H nomor 2 dan 4 menjauhi pengamat maka digambarkan dalam posisi vertikal. Pada bentuk 3 dimensi sebenarnya besar sudut antara molekul hydrogen adalah 109,5° sedangkan pada bentuk 2 dimensi biasanya menggambarkan sudut antar molekul hydrogen 90°.
2. Ketentuan Cahn-Ingold-Prelog (Konfigurasi Absolut)
Konfigurasi mutlak merupakan konfigurasi mutlak adalah konfigurasi yang penataan atom-atom dalam tiga dimensi dengan orientasi yang sudah pasti. Konfigurasi mutlak menggunakan arah orientasi R (rectus) dan S (sinister) untuk setiap pusat kiral dalma molekul dan merupakan pilihan untuk menentukan konfigurasi pusat kiral molekul obat . Penentuan pusat gugus yang melekat pada pusat kiral berdasarkan nomor atom yang bersangkutan. Arah orientasi R adalah searah jarum jam, sedangkan arah orientasi S adalah berlawanan jarum jam. Cara penentuan konfigurasi R dan S berdasarkan ketentuan Chan-Ingold-Prelog.
Sistem yang paling sukses untuk menunjukkan konfigurasi senyawa-senyawa umum adalah konvensi Cahn-Ingold-Prelog. Cahn (dari inggris), Ingold (dari Swiss), dan Prelog (Swiss) mengusulkan cara penentuan konfigurasi atom karbon stereogenik baru yang didasarkan atas aturan pronitas (priority rule) atau aturan urutan (sequence rule). System ini menggunakan huruf R atau S untuk setiap pusat kiral dalam molekul dan merupakan pilihan untuk menentukan konfigurasi pusat kiral molekul obat. Penentuan setiap gugus yang melekat pada pusat kiral berdasarkan nomor atom yang bersangkutan. Nomor atom yang lebih berat memiliki prioritas yang lebih utama, sehingga atom hidrogen (H) pada urutan paling akhir. Jika keseluruhan prioritas disekitar kiral pusat telah ditentukan. jika urutan prioritas gugus tersusun menurut arah jarum jam disekitar pusat kiral, karbon kiral menerima konfigurasi R (Rectus) dan jika sebaliknya sebagai konfigurasi S (Sinister). Cara penentuan konfigusai R atau S sebagai berikut:
Sistem yang paling sukses untuk menunjukkan konfigurasi senyawa-senyawa umum adalah konvensi Cahn-Ingold-Prelog. Cahn (dari inggris), Ingold (dari Swiss), dan Prelog (Swiss) mengusulkan cara penentuan konfigurasi atom karbon stereogenik baru yang didasarkan atas aturan pronitas (priority rule) atau aturan urutan (sequence rule). System ini menggunakan huruf R atau S untuk setiap pusat kiral dalam molekul dan merupakan pilihan untuk menentukan konfigurasi pusat kiral molekul obat. Penentuan setiap gugus yang melekat pada pusat kiral berdasarkan nomor atom yang bersangkutan. Nomor atom yang lebih berat memiliki prioritas yang lebih utama, sehingga atom hidrogen (H) pada urutan paling akhir. Jika keseluruhan prioritas disekitar kiral pusat telah ditentukan. jika urutan prioritas gugus tersusun menurut arah jarum jam disekitar pusat kiral, karbon kiral menerima konfigurasi R (Rectus) dan jika sebaliknya sebagai konfigurasi S (Sinister). Cara penentuan konfigusai R atau S sebagai berikut:
1. Urutkan prioritas keempat atom yang terikat pada pusat kiral berdasarkan nomor atomnya. Diketahui nomor atom Br = 35, Cl = 17, F = 9, H = 1, maka urutan prioritas keempat atom di atas adalah Br > Cl > F > H.
2. Gambarkan proyeksi molekul sedemikian rupa hingga atom dengan prioritas terendah ada di belakang atau putar struktur (1) dan (2) sehingga atom H ada di belakang.
3. Buat anak panah mulai dari atom/gugus berprioritas paling tinggi ke prioritas yang lebih rendah.
4. Bila arah anak panah searah jarum jam, konfigurasinya adalah R. Bila arah anak panah berlawanan dengan arah jarum jam, konfigurasinya adalah S. Jadi konfigurasi struktur (1) adalah S, sedangkan konfigurasi struktur (2) adalah R.
B. Pemisahan Campuran Rasemik
Campuran rasemik artinya suatu campuran yang mengandung sepasang enantiomer dalam jumlah yang sama. Sepasang enentiomer itu adalah enantiomer R dan enentiomer S. ebagian masyarakat mungkin kurang memperhatikan sifat optis suatu senyawa organik, padahal reaksi kimia dalam sistem biologis makhluk hidup sangat stereospesifik. Artinya suatu stereoisomer akan menjalani reaksi yang berbeda dengan stereoisomer pasangannya dalam sistem biologis makhluk hidup. Bahkan terkadang suatu stereoisomer akan menghasilkan produk yang berbeda dengan stereoisomer pasangannya dalam sistem biologis makhluk hidup. Dalam kebanyakan reaksi di laboratorium, seorang ahli kimia menggunakan bahan baku akiral ataupun rasemik dan memperoleh produk akiral dan rasemik. Oleh karena itu sering kiralitas (atau tiadanya kiralitas) pereaksi dan produk diabaikan dalam bab-bab berikutnya.
Berlawanan dengan reaksi kimia di laboratorium, kebanyakan reaksi biologis mulai dengan pereaksi kiral atau akiral dan menghasilkan produk-produk kiral. Reaksi biologis ini dimungkinkan oleh katalis biologis yanh disebut enzim, yang bersifat kiral. Ingat bahwa sepasang enantiomer mempunyai sifat-sifat kimia yang sama kecuali dalam hal antraksi dengan zat-zat kiral lain. Karena enzim bersifat kiral, maka enzim dapat sangat selektif dalam keguatan katalitiknya. Misalnya, bila suatu organisme mencerna suatu campuran alanina rasemik maka hanya (S)-alanina ang tergabung ke dalam bangunan protein. (R)-alanina tidak digunakan dalam protein, malahan alanina oni dengan bantuan enzim lain dioksidasi menjadi suatu asam keto serta memasuki bagan metabolisme lain.
Pada laboratorium pemisahan fisis suatu campuran rasemik menjadi enantiomer-enantiomer murni disebut resolusi (atau resolving) campuran rasemik itu. Pemisahan natrium amonium tartarat rasemik oleh Pasteur adalah suatu resolusi campuran tersebut. Enantiomer-enantiomer yang mengkristal secara terpisah merupakan gejala yang sangat jarang, jadi cara Pasteur tidak dapat dianggap sebagai suatu teknik yang umum. Karena sepasang enantiomer itu menunjukkan sifat-sifat fisika dan kimia yang sama, maka tidak dapat dipisahkan dengan cara kimia atau fisika biasa. Sebagai gantinya, ahli kimia terpaksa mengandalkan reagensia kiral atau katalis kiral (yang hampir selalu berasal dari dalam organisme hidup).
Cara untuk memisahkan campuran rasemik atau sekurangnya mengisolasi enantiomer murni adalah mengolah campuran itu dengan suatu mikroorganisme yang hanya akan mencerna salah satu dari enantiomer itu. Misalnya (R)- nikotina murni dapat diperoleh dari (R)(S)- nikotina dengan menginkubasi campuram rasemik itu dengan bakteri Pseudomonas Putida yang mengoksidasi (S)- nikotina tetapi tidak (R)-enantiomer.
Proses pemisahan campuran resemik menjadi entatiomernya dinamakan resolusi. Karena entatiomer memiliki sifat akiral yang identik, kita memisahkan dengan cara mengonversinya menjadi diastereomer, pisahkan diastereomer, dan kemudia merekonversi diastereomer yang sekarang telah terpisah menjadi enantiomernya kembali.
Untuk memisahkan dua enantiomer, pertama-tama kita reaksikan dengan reagen kiral. Produknya kan berupa sepasang diastereomer. Diastereomer ini diketahui berbeda dalam semua jenis dan sifatnya dan dapat dipisahkan melalui metode biasa. Sesudah diastereomer-diastereomer ini dipisahkan, kemmudian kita melaksanakan reaksi yang meregenerasi reagen kira itu dan memisahkan enantiomernya.
Prinsip dasar isomer optik yaitu:
1. Sepasang enantiomer memiliki sifat-sifat fisika (titik didih, kelarutan, dan lain-lain) yang sama tetapi berbeda dalam arah rotasi polarimeter dan interaksi dengan zat kiral lainnya.
2. Sepasang diastereoisomer memiliki sifat-sifat fisika dan sudut rotasi polarimeter yang berbeda satu sama lain. Bahkan sering dalam bereaksi mengambil cara yang berlainan. Artinya kita bisa memisahkan campuran dua diastereoisomer dengan cara-cara fisika (destilasi, kristalisasi, dan lain-lain). Akan tetapi tidak bisa memisahkan campuran dua enantiomer dengan cara-cara fisika, karena sepasang enantiomer memiliki properti fisika yang sama. Kesimpulannya, kita dapat dengan mudah memisahkan campuran dua diastereoisomer, tapi akan kesulitan memisahkan campuran dua enantiomer.
Sebagian masyarakat mungkin kurang memperhatikan sifat optis suatu senyawa organik, padahal reaksi kimia dalam sistem biologis makhluk hidup sangat stereospesifik. Artinya suatu stereoisomer akan menjalani reaksi yang berbeda dengan stereoisomer pasangannya dalam sistem biologis makhluk hidup. Bahkan terkadang suatu stereoisomer akan menghasilkan produk yang berbeda dengan stereoisomer pasangannya dalam sistem biologis makhluk hidup.
Senyawa kiral
APA itu kiral? Kata "kiral" berasal dari bahasa Yunani "cheir" yang artinya tangan. Coba bayangkan tangan kiri berada di depan cermin, tentu saja bayangannya adalah tangan kanan. Sekarang posisikan tangan kiri dan tangan kanan menghadap ke bawah atau ke arah lantai. Kemudian letakan tangan kiri di atas tangan kanan anda. Terlihat, tangan kanan tidak bisa diimpitkan dengan tangan kiri kita.
Hal yang sama juga berlaku bagi molekul-molekul organik tertentu. Pada gambar 1, dapat dilihat senyawa Alanine memiliki dua struktur yang berbeda. Sebutlah A dan B yang analog dengan tangan kiri dan tangan kanan kita. A dan B sering disebut sebagai stereoisomer (isomer ruang) atau isomer optis. Harus diingat, suatu molekul organik disebut molekul kiral jika terdapat minimal satu atom C yang mengikat empat gugus yang berlainan seperti senyawa Alanine pada gambar 1. Molekul-molekul kiral memiliki sifat yang sangat unik yaitu sifat optis. Artinya suatu molekul kiral memiliki kemampuan untuk memutar bidang cahaya terpolarisasi pada alat yang disebut polarimeter.
Sistem tata nama isomer optik diperkenalkan Chan-Ingold-Prelog yang menglasifikasikan atom C kiral sebagai R atau S. Sistem tata nama ini sering dinamakan konfigurasi mutlak/absolut. Contohnya (2R,3S)-2,3 dibromo pentana. Pada tulisan ini tidak akan dijelaskan aturan penamaan R dan S.
Permasalahan:
Mengapa ketiadaan bidang simetri menyebabkan perubahan penataan ruang gugus-gugus yang terikat pada pusat kiral akan menghasilkan senyawa yang berbeda?
Permasalahan:
Mengapa ketiadaan bidang simetri menyebabkan perubahan penataan ruang gugus-gugus yang terikat pada pusat kiral akan menghasilkan senyawa yang berbeda?
saya ingin bertanya seperti apa bentuk konfigurasi Conformer chair dalam molekul sikloheksana? terima kasih. wassalamu'alaikum wr.wb
BalasHapusSaudari yulisa, berhubung pada komentar tidak dapat menambahkan gambar, anda dapat melihat pada link berikut : https://4.bp.blogspot.com/-IST2dZeq2n0/V_oBjqh9OaI/AAAAAAAAAHU/q8nETyGQObMFaRPCBPnnO97pD3EOu0_eQCLcB/s1600/konformasi%2Bsikloheksana.jpg
HapusApakah ada sifat kiral yg lain selain arah rotasi?
BalasHapusMolekul-molekul kiral memiliki sifat optis, yang artinya suatu molekul kiral memiliki kemampuan untuk memutar bidang cahaya terpolarisasi pada alat yang disebut polarimeter. senyawa kiral Bersifat tidak dapat berhimpit.
HapusMengapa Sebagian masyarakat kurang memperhatikan sifat optis suatu senyawa organik, padahal reaksi kimia dalam sistem biologis makhluk hidup sangat stereospesifik??
BalasHapusArtinya suatu stereoisomer akan menjalani reaksi yang berbeda dengan stereoisomer pasangannya dalam sistem biologis makhluk hidup. Bahkan terkadang suatu stereoisomer akan menghasilkan produk yang berbeda dengan stereoisomer pasangannya dalam sistem biologis makhluk hidup.
HapusAlasan kenapa masyarakat kurang memperhatikan sifat optis suatu senyawa organik karena kurangnya pemahaman masyarakat terhadap materi tersebut. Sebab tidak semua masyarakat mempelajari materi ini.
Jelaskan konvigurasi mutlak dan konvigurasi relatif secara umum ! Dan berikan contohnya
BalasHapusKonfigurasi Relatif merupakan konfigurasi yang membandingkan atom-atom dalam ruang tiga dimensi dalam suatu senyawa dengan yang lain. Contoh molekul Fischer untuk molekul metana (CH4).
Hapuskonfigurasi mutlak adalah konfigurasi yang penataan atom-atom dalam tiga dimensi dengan orientasi yang sudah pasti.Contoh adalah S-naproksen dan R-naproksen, kedua senyawa yang hanya berbeda pada konfigurasi atom kiralnyatersebut, ternyata mempunyai aktivitas biologis sangat berbeda.
Saya ingin bertanya, bagaimana cara untuk memisahkan campuran resemik atau sekurangnya mengisolasi satu enantiomer murni?
BalasHapusCara untuk memisahkan campuran rasemik atau sekurangnya mengisolasi enantiomer murni adalah mengolah campuran itu dengan suatu mikroorganisme yang hanya akan mencerna salah satu dari enantiomer itu. Misalnya (R)- nikotina murni dapat diperoleh dari (R)(S)- nikotina dengan menginkubasi campuram rasemik itu dengan bakteri Pseudomonas Putida yang mengoksidasi (S)- nikotina tetapi tidak (R)-enantiomer.
HapusKetiadaan bidang simetri menyebabkan perubahan penataan ruang gugus-gugus yang terikat pada pusat kiral akan menghasilkan senyawa yang berbeda. Perbedaan tersebut ditunjukkan oleh perbedaan arah perputaran bidang cahaya terpolarisasi yang berinteraksi dengan molekul kiral tersebut. Terdapat dua kemungkinan penataan ruang gugus-gugus disekitar pusat kiral, sehingga untuk senyawa dengan satu nama yang mempunyai satu pusat kiral akan mempunyai dua senyawa berbeda yang merupakan isomer satu sama lain.
BalasHapusSebagai contoh, gliseraldehida mempunyai satu pusat kiral, yaitu atom karbon nomor dua. Terdapat empat gugus berbeda yang terikat pada atom karbon nomor 2, yaitu H, CH2OH, CHO dan OH. Keempat gugus berbeda tersebut mempunyai dua cara penataan ruang yang berbeda sehingga terdapat dua bentuk senyawa yang merupakan isomer satu sama lain. Isomer yang satu memutar bidang cahaya terpolarisasi ke kanan (diberi tanda +) dengan besar sudut putar 3, karena itu isomer ini diberi nama d-gliseraldehida. Huruf d ditambahkan di depan nama gliseraldehida untuk menunjukkan arah putaran bidang cahaya terpolarisasi, d diambil dari kata Latin dexter yang artinya kanan. Sementara itu, isomer yang lain memutar bidang cahaya terpolarisasi ke arah sebaliknya, yaitu ke kiri (diberi tanda -) dengan besar sudut putar sama (yaitu 3). Isomer ini diberi nama l-gliseraldehida, huruf l berasal dari kata Latin levo yang artinya kiri.